Filomat 29:4 (2015), 787–793 DOI 10.2298/FIL1504787S

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Module Amenability of Restricted Semigroup Algebras Under Module Actions

Abbas Sahleh^a, Somaye Grailo Tanha^a

^aFaculty of Mathematical Sciences, The University of Guilan

Abstract. In this article, we show that module amenability with the canonical action of restricted semigroup algebra $l_r^1(S)$ and semigroup algebra $l_r^1(S_r)$ are equivalent, where S_r is the restricted semigroup of associated to the inverse semigroup *S*. We use this to give a characterization of module amenability of restricted semigroup algebra $l_r^1(S)$ with the canonical action, where *S* is a Clifford semigroup.

1. Introduction

The notion of module amenability for a Banach algebra \mathcal{A} which is a Banach module over another Banach algebra \mathcal{U} is defined by Amini in [1]. He showed that for an inverse semigroup *S*, the semigroup algebra $l^1(S)$ is module amenable as a $l^1(E)$ - module with the multiplication right action and the trivial left action, where *E* is the set of idempotents of *S* if and only if *S* is amenable.

In this paper we show that module amenability of $l^1(S)$ as an $l^1(E)$ -module with the canonical action implies its module amenability as an $l^1(E)$ -module with the trivial left action. The main difference is that the corresponding equivalence relation leads a Clifford homomorphic image. We characterize module amenability of the restricted semigroup algebra $l_r^1(S)$ as an $l_r^1(E)$ -module with the canonical action, for each Clifford semigroup *S*. Also we show that in the canonical action, the module amenability of the semigroup algebra $l^1(S_r)$ and the restricted semigroup algebra $l_r^1(S)$ are equivalent. This could be considered as the module version of a result of [6], [9], which asserts that the amenability of the semigroup algebra $l^1(S_r)$ and the restricted semigroup algebra $l_r^1(S)$ are equivalent.

Throughout this paper, \mathcal{A} and \mathcal{U} are Banach algebras such that \mathcal{A} is a Banach \mathcal{U} -module with compatible actions

$$\alpha \cdot (ab) = (\alpha \cdot a)b, \quad (ab) \cdot \alpha = a(b \cdot \alpha) \qquad (a, b \in \mathcal{A}, \alpha \in \mathcal{U}),$$

and

$$\alpha \cdot (\beta \cdot a) = (\alpha \beta) \cdot a, \quad (a \cdot \beta) \cdot \alpha = a \cdot (\beta \alpha) \quad (a \in \mathcal{A}, \alpha, \beta \in \mathcal{U}).$$

The Banach algebra \mathcal{U} acts trivially on \mathcal{A} from left (right) if for each $\alpha \in \mathcal{U}$ and $a \in \mathcal{A}$, $\alpha \cdot a = f(\alpha)a$ ($a \cdot \alpha = f(\alpha)a$), where f is a continuous character on \mathcal{U} .

Let *X* be a Banach \mathcal{A} -module and a Banach \mathcal{U} -module with compatible actions

$$\alpha \cdot (a \cdot x) = (\alpha \cdot a) \cdot x, \ a \cdot (\alpha \cdot x) = (a \cdot \alpha) \cdot x,$$

²⁰¹⁰ Mathematics Subject Classification. Primary 43A07; Secondary 46H25

Keywords. module amenability, semigroup algebra, Clifford semigroup, commutative action

Received: 17 October 2013; Revised: 15 December 2013; Accepted: 04 February 2014

Communicated by Mohammad Sal Moslehian

Email addresses: sahlehj@guilan.ac.ir (Abbas Sahleh), so.grailo@guilan.ac.ir (Somaye Grailo Tanha)

A. Sahleh, S. Grailo / Filomat 29:4 (2015), 787-793

$$(\alpha \cdot x) \cdot a = \alpha \cdot (x \cdot a) \ (a \in \mathcal{A}, \alpha \in \mathcal{U}, x \in X);$$

and similarly for the right and two sided actions. We call X a \mathcal{A} - \mathcal{U} -module. If in addition,

$$\alpha \cdot x = x \cdot \alpha \quad (\alpha \in \mathcal{U}, x \in X)$$

then *X* is called a commutative \mathcal{A} - \mathcal{U} -module. If *X* is a commutative \mathcal{A} - \mathcal{U} -module, then so is *X*^{*}, under the actions

$$(\alpha \cdot f)(x) = f(x \cdot \alpha), \ (a \cdot f)(x) = f(x \cdot a) \ (a \in \mathcal{A}, \alpha \in \mathcal{U}, x \in X, f \in X^*)$$

and similarly for the right actions.

Let *J* be the closed ideal of \mathcal{A} generated by elements of the form $\alpha \cdot ab - ab \cdot \alpha$ for $\alpha \in \mathcal{U}$, $a, b \in \mathcal{A}$. Let \mathcal{A} , \mathcal{U} and *X* be as above. A bounded map $D : \mathcal{A} \to X$ is called a module derivation if

$$D(a \pm b) = D(a) \pm D(b)$$
, $D(ab) = Da \cdot b + a \cdot Db$ $(a, b \in \mathcal{A})$

and

$$D(\alpha \cdot a) = \alpha \cdot D(a)$$
, $D(a \cdot \alpha) = D(a) \cdot \alpha$ $(a \in \mathcal{A}, \alpha \in \mathcal{U})$

Note that *D* is not necessarily linear, but still its boundedness implies its norm continuity (since D preserves subtraction). When *X* is commutative, each $x \in X$ defines a module derivation

$$\delta_x(a) = a \cdot x - x \cdot a \quad (a \in \mathcal{A}).$$

These are called inner module derivations.

Definition 1.1. \mathcal{A} is called module amenable (as an \mathcal{U} -module) if for any commutative \mathcal{A} - \mathcal{U} -module X, each module derivation $D : \mathcal{A} \to X^*$ is inner.

Definition 1.2. A discrete semigroup S is called an inverse semigroup if for each $x \in S$ there is a unique element $x^* \in S$ such that $xx^*x = x$ and $x^*xx^* = x^*$. An element $e \in S$ is called an idempotent if $e = e^2$.

Throughout this paper *S* is an inverse semigroup with the set of idempotents *E*. An inverse semigroup whose idempotents are in the center is called a Clifford semigroup [3]. A Clifford semigroup *S* is called a semilattice if each element of *S* is idempotent [7]. It is easy to see that *E* is a commutative subsemigroup of *S* and $l^{1}(E)$ can be regarded as a subalgebra of $l^{1}(S)$.

Let $l^1(E)$ acts on $l^1(S)$ by the multiplication from right and trivially from left, that is

$$\delta_e * \delta_s = \delta_s, \ \delta_s \cdot \delta_e = \delta_{se} \ (s \in S, e \in E)$$

In this case, *J* is the closed ideal generated by

$$\{\delta_s - \delta_{se} : s \in S, e \in E\}.$$

Consider an equivalence relation on *S* as follows

$$h \approx k \Leftrightarrow \delta_h - \delta_k \in J \quad (h, k \in S).$$

It is shown in [8] that the quotient S / \approx is a discrete group.

2. Module amenability of restricted semigroup algebras

Here we consider $l^1(E)$ acts on $l^1(S)$ with canonical actions, that is

$$\delta_e \cdot \delta_s = \delta_{es}, \ \delta_s \cdot \delta_e = \delta_{se} \ (s \in S, e \in E).$$

788

The closed ideal J_c of $l^1(S)$ is generated by

$$\{\delta_{es} - \delta_{se} : s \in S, e \in E\}$$

We consider an equivalence relation on *S* as follows

$$s \sim t \Leftrightarrow \delta_s - \delta_t \in J_c \quad (s, t \in S).$$

An equivalence relation *R* on a semigroup *S* is called a congruence if

$$(s,t) \in R \Rightarrow (as,at), (sa,ta) \in R (s, t, a \in S).$$

Congruences on any semigroup provide some information about its homomorphic images[2].

Let ρ be a congruence on *S* and P a property of homomorphic image *S*/ ρ , we call ρ a P congruence. A least congruence ρ such that *S*/ ρ is a P congruence is called the least P congruence.

Lemma 2.1. \sim *is the least Clifford congruence on S.*

Proof. Since J_c is an ideal of $l^1(S)$, ~ is a congruence. From definition of ~, it follows that $es \sim se$. Thus S/ \sim is a Clifford semigroup. Hence the least Clifford congruence $\xi \subseteq \sim$.

Let I_{γ} be the closed ideal of $l^1(S)$ generated by

$$\{\delta_s - \delta_t : (s, t) \in \gamma\},\$$

for each Clifford congruence γ on S. Clearly

$$s\gamma t \Leftrightarrow \delta_s - \delta_t \in I_{\gamma}$$
 (*s*, $t \in S$).

Since $(es, se) \in \gamma$, it follows that $\delta_{es} - \delta_{se} \in I_{\gamma}$. Thus $J_c \subseteq I_{\gamma}$ and so $\sim \subseteq \gamma$, for each Clifford congruence γ . Hence $\sim \subseteq \xi$. \Box

Let *X* be a commutative $l^1(S)$ - $l^1(E)$ -module. Throughout this paper we denote by • the left and right actions of $l^1(E)$ on *X* and by \cdot the left and right actions of $l^1(S)$ on *X*.

Proposition 2.2. If $l^1(S)$ is module amenable as an $l^1(E)$ -module with the canonical action then $l^1(S)$ is module amenable as an $l^1(E)$ -module with the trivial left action.

Proof. Suppose that $l^1(E)$ acts on $l^1(S)$ with the trivial left action and the multiplication right action. Let *X* be a commutative $l^1(S)$ - $l^1(E)$ -module and $D : l^1(S) \to X^*$ be a module derivation. We have

$$\delta_{se} \cdot x = \delta_s \cdot (\delta_e \bullet x) = \delta_s \cdot (x \bullet \delta_e)$$

= $(\delta_s \cdot x) \bullet \delta_e = \delta_e \bullet (\delta_s \cdot x)$
= $(\delta_e \bullet \delta_s) \cdot x$
= $\delta_s \cdot x.$

Thus $J \cdot X = 0$ and similarly $X \cdot J = 0$. Now since $S \approx is$ a group, $es \approx se$ and so $\delta_{es} - \delta_{se} \in J$. It follows that $X \cdot J_c = J_c \cdot X = 0$ and even if $l^1(E)$ acts on $l^1(S)$ with the canonical action, X is a commutative $l^1(S) \cdot l^1(E)$ -module. In additions, we have

$$D(\delta_{se}) = D(\delta_s) \bullet \delta_e = \delta_e \bullet D(\delta_s) = D(\delta_s).$$

Therefore $D|_I = 0$ and so $D(\delta_{es} - \delta_{se}) = 0$. Now if $l^1(E)$ acts on $l^1(S)$ with the canonical action, then we have

$$D(\delta_f \cdot \delta_s) = D(\delta_s \cdot \delta_f) = D(\delta_s) \bullet \delta_f = \delta_f \bullet D(\delta_s) \quad (f \in E, \ s \in S).$$

Hence *D* is a module derivation. So by assumption it is inner. \Box

Similar to the Proposition 2.1.5 of [10] we have the following Lemma.

789

Lemma 2.3. Let $l^1(S)$ has a bounded approximate identity. Then $l^1(S)$ is module amenable as an $l^1(E)$ -module with the canonical action if and only if each module derivation $D : l^1(S) \to X^*$ is inner, for each pseudo-unital $l^1(S)-l^1(E)$ -module X.

Theorem 2.4. Let *S* be a semilattice. Then $l^1(S)$ is module amenable as an $l^1(E)$ -module with the canonical action if and only if $l^1(S)$ admits a bounded approximate identity.

Proof. Suppose that $l^1(S)$ admits a bounded approximate identity (λ_i) . Consider a module derivation $D: l^1(S) \to X^*$. For each $e \in S$ and $\lambda \in \mathbb{C}$ we have

$$D(\lambda \delta_e) = \lambda \delta_e \bullet D(\delta_e) = \lambda D(\delta_e).$$

Thus *D* is a derivation. By Lemma 2.3, we may suppose that *X* is pseudo-unital $l^1(S)$ -module. That is, for each $x \in X$, there exist $f, g \in l^1(S)$ and there is $y \in X$ such that $x = f \cdot y \cdot g$. It follows that

$$D(\delta_e)(x) = D(\delta_e)(f \cdot y \cdot g)$$

= $D(\delta_e)((\lim_i \lambda_i \cdot f) \cdot y \cdot g)$
= $D(\delta_e)(\lim_i \lambda_i \cdot (f \cdot y \cdot g))$
= $\lim_i D(\delta_e) \cdot \lambda_i(f \cdot y \cdot g)$
= $\lim_i D(\delta_e) \cdot \lambda_i(x).$

Similarly $D(\delta_e)(x) = \lim_i \lambda_i \cdot D(\delta_e)(x)$. From the equalities $D(\delta_{ef}) = D(\delta_e) \bullet \delta_f = D(\delta_f) \bullet \delta_e$, it follows that

$$D(\delta_e) \cdot \delta_{ef} = D(\delta_f) \cdot \delta_e,\tag{1}$$

for each $e, f \in S$. In addition, we have

$$D(\delta_{ef}) = \delta_e \bullet D(\delta_{ef}) = \delta_e \bullet (\delta_e \cdot D(\delta_f) + D(\delta_e) \cdot \delta_f)$$

= $\delta_e \cdot D(\delta_f) + D(\delta_e) \cdot \delta_{ef}.$

Thus

$$D(\delta_e) \cdot \delta_{ef} = D(\delta_e) \cdot \delta_f. \tag{2}$$

From (1), (2), it follows that $D(\delta_e) \cdot \delta_f = D(\delta_f) \cdot \delta_e$, for each $e, f \in S$. Thus we have for each $\lambda_i, D(\lambda_i) \cdot \delta_e = D(\delta_e) \cdot \lambda_i$ and so $D(\delta_e) = \lim_i D(\lambda_i \cdot \delta_e) = \lim_i (D(\delta_e) \cdot \lambda_i + \lambda_i \cdot D(\delta_e))$. This implies that $D(\delta_e)(x) = \lim_i D(\delta_e) \cdot \lambda_i(x) + \lim_i \lambda_i \cdot D(\delta_e)(x) = 2D(\delta_e)(x)$, for each $x \in X$. Hence $D(\delta_e)(x) = 0$, for $x \in X$ and so $D(\delta_e) = 0$. Conversely, since $l^1(S)$ is a commutative $l^1(S)$ -module, it has a bounded approximate identity by [1]. \Box

Note that by the above theorem, for semilattice $S = (\mathbb{N}, \vee)$, $l^1(S)$ is module amenable as an $l^1(E)$ -module with the canonical action. This example shows that module amenability of a semilattice algebra does not imply finiteness of the semilattice.

Consider the multiplication \circ on the Banach space $l^1(S)$ by

$$\sum_{s\in S} f(s)\delta_s \circ \sum_{t\in S} g(t)\delta_t = \sum_{r\in S} \sum_{st=r, \ s^*s=tt^*} f(s)g(t)\delta_r,$$

if there are no elements $t, s \in S$ with st = r and $s^*s = tt^*$, the multiplication is taken as zero. Under the usual l^1 -norm, $(l^1(S), \circ)$ is a Banach algebra. We denote this Banach algebra by $l_r^1(S)$ as in [6]. In the particular case,

$$\delta_s \circ \delta_t = \begin{cases} \delta_{st} & s^*s = tt^* \\ 0 & otherwise. \end{cases}$$

Note that $l_r^1(E)$ could be regarded as a subalgebra of $l_r^1(S)$. Here we consider $l_r^1(E)$ acts on $l_r^1(S)$ with the canonical actions. The closed ideal J_B of $l_r^1(S)$ is generated by

$$\{\delta_s \mid s \in S, ss^* \neq s^*s\}.$$

Consider an equivalence relation \sim_B on *S* as follows

$$s \sim_B t \iff \delta_s - \delta_t \in J_B \ (s, t \in S)$$

Note that in general, \sim_B is not a congruence.

Let X be a commutative $l_r^1(S)$ - $l_r^1(E)$ - module. Throughout the rest of this paper we denote left and right actions of $l_r^1(E)$ on X by • and left and right actions of $l_r^1(S)$ on X by ·.

Proposition 2.5. $l_r^1(S)$ is module amenable as an $l_r^1(E)$ -module with the canonical action if and only if $l_r^1(S)/J_B$ is module amenable as an $l_r^1(E)$ -module.

Proof. Let *X* be a commutative $l_r^1(S)$ - $l_r^1(E)$ -module. Consider a module derivation $D : l_r^1(S) \to X^*$. For each $s \in S$ such that $ss^* \neq s^*s$, we have

$$D(\delta_s) = D(\delta_s \circ \delta_{s^*s}) = D(\delta_s) \bullet \delta_{s^*s}$$

= $\delta_{s^*s} \bullet D(\delta_s) = D(\delta_{s^*s} \circ \delta_s)$
= 0.

Thus $D|_{J_B} = 0$ and so $\tilde{D} : l_r^1(S)/J_B \to X^*$ defined by $\tilde{D}(\delta_s + J_B) = D(\delta_s)$ is a module derivation. We conclude that if $l_r^1(S)/J_B$ is module amenable as $l_r^1(E)$ -module with the canonical action, then $l_r^1(S)$ is module amenable as $l_r^1(E)$ -module with the canonical action. The converse follows using the module homomorphism $\pi : l_r^1(S) \to l_r^1(S)/J_B$ and Proposition 2.5 of [1]. \Box

Proposition 2.6. Let *S* be a Clifford semigroup. Then $l_r^1(S)$ is module amenable as an $l_r^1(E)$ -module with the canonical action if and only if $l^1(S)$ is amenable.

Proof. Suppose that $l_r^1(S)$ is module amenable as an $l_r^1(E)$ -module with the canonical action. Since *S* is a Clifford semigroup, $l_r^1(S)$ is a commutative $l_r^1(E)$ -module with the canonical action. It follows from Proposition 2.2 of [1] that $l_r^1(S)$ has a bounded approximate identity. From [6], it follows that *E* is finite. Let *I* be the closed principal ideal of *S* generated by $e \in E$. Thereby $l_r^1(I)$ is an $l_r^1(E)$ -module with the following compatible actions

$$\delta_f \cdot \delta_i := \delta_f \circ \delta_i, \ \delta_i \cdot \delta_f := \delta_i \circ \delta_f \ (f \in E, i \in I).$$

Consider the module homomorphism $\varphi : l_r^1(S) \to l_r^1(I)$ defined by $\varphi(\delta_s) = \delta_s \circ \delta_e$. Thus $l_r^1(I)$ is module amenable as an $l_r^1(E)$ -module with the canonical action. Now put $I_e = \{b \in I : SbS \subseteq I\}$. Similarly I_e is an ideal of I and $\psi : l_r^1(I) \to l_r^1(I/I_e)$ is a module homomorphism and so $l_r^1(I/I_e)$ is module amenable as an $l_r^1(E)$ -module with the canonical action, by Proposition 2.5 of [1]. Similarly $I/I_e \cong \{0\} \cup G_e$ and $l_r^1(\{0\} \cup G_e)$ is module amenable as an $l_r^1(E)$ -module with the canonical action. We claim that $l^1(G_e)$ is amenable. Let X be a $l^1(G_e)$ -module and $D : l^1(G_e) \to X^*$ be a derivation. Since $l_r^1(\{0\} \cup G_e) = l^1(\{0\} \cup G_e) = l^1(G_e) \oplus \mathbb{C}\delta_0$, with the following new definition, X is a commutative $l^1(\{0\} \cup G_e) - l^1(\{0, e\})$ -module with the compatible actions

$$x \cdot \delta_0 = \delta_0 \cdot x = 0.$$

Consider \tilde{D} : $l^1(\{0\} \cup G_e) \to X^*$ defined by $\tilde{D}(\delta_g) = D(\delta_g)(g \in G_e)$ and $D(\delta_0) = 0$. Clearly if $l^1(S)$ is an $l^1(E)$ -module with the canonical action, then \tilde{D} is a module derivation and so it is inner. Therefore D is an inner derivation and this proves that $l^1(G_e)$ is amenable. It follows that G_e is amenable and by [5], $l^1(S)$ is amenable. The converse is clear. \Box

Corollary 2.7. Let *S* be a semilattice. Then $l_r^1(S)$ is module amenable as an $l_r^1(E)$ -module with the canonical action if and only if *S* is finite.

791

Proof. It follows from the above proposition that $l^1(S)$ is amenable. Since *S* is semilattice, *S* is finite. The converse is clear. \Box

Proposition 2.6 means that if $l_r^1(S)$ is module amenable as an $l_r^1(E)$ -module with the canonical action then $l^1(S)$ is module amenable with the canonical action for each Clifford semigroup. The converse fails in general. For example let (\mathbb{N}, \vee) be the semigroup of positive integers with maximum operation, that is $m \vee n = \max(m, n)$. By Theorem 2.4, $l^1(S)$ is module amenable as an $l_r^1(E)$ -module with the canonical action but $l_r^1(S)$ is not module amenable as an $l_r^1(E)$ -module with the canonical action by Corollary 2.7.

For an arbitrary inverse semigroup *S* with the set of idempotents *E*, the restricted product of elements *x* and *y* of *S* is *xy* if $x^*x = yy^*$ and undefined, otherwise. The set *S* with this restricted product forms a discrete groupoid [4]. If we adjoin a zero element 0 to this groupoid and put $0^* = 0$, then we get an inverse semigroup *S*_r with the multiplication rule

$$x \diamond y = \begin{cases} xy & x^*x = yy^* \\ 0 & otherwise, \end{cases}$$

for each $x, y \in S \cup \{0\}$. The inverse semigroup S_r is called the restricted semigroup of S (see[6]). Note that $(l^1(E \cup \{0\}), \diamond)$ could be regarded as a subalgebra of $l^1(S_r)$ and we denote this Banach algebra by $l^1(E_r)$. Thereby $l^1(S_r)$ is an $l^1(E_r)$ -module with the canonical action. The closed ideal J_r of $l^1(S_r)$ is generated by

$$\{\delta_s - \delta_0 | s \in S, \ s^*s \neq ss^*\}$$

We consider an equivalence relation \sim_r on S_r as follows

$$s \sim_r t \iff \delta_s - \delta_t \in J_r \ (s, t \in S_r).$$

Proposition 2.8. \sim_r is the least Clifford congruence on S_r .

Proof. From definition of J_r , $s \sim_r t$ for each s, $t \in S$ such that $ss^* \neq s^*s$ and $tt^* \neq t^*t$. Since each element s such that $ss^* = s^*s$ is contained in a maximal subgroup of S, S is a semilattice of groups. Thus S/\sim_r is a Clifford semigroup by Theorem 4.2.1 of [3]. Thus \sim_r is a Clifford equivalence. Suppose that $s \sim_r t$ and $l \in S$. Since $\delta_s - \delta_t \in J_r$, it follows that $\delta_l \cdot (\delta_s - \delta_t) \in J_r$ and $(\delta_s - \delta_t) \cdot \delta_l \in J_r$. Thus $\delta_{l \circ s} - \delta_{l \circ t} \in J_r$ and $\delta_{s \circ l} - \delta_{t \circ l} \in J_r$ and so \sim_r is a congruence on S_r . Finally suppose that ρ is a Clifford congruence on S_r . Let I_ρ be the closed ideal of $l^1(S_r)$ generated by $\{\delta_s - \delta_t : (s, t) \in \rho\}$. Clearly

$$s\rho t \Leftrightarrow \delta_s - \delta_t \in I_{\rho}.$$

Since for each $s \in S$ such that $ss^* \neq s^*s$ we have $(s, 0) \in \rho$, it follows that $\delta_s - \delta_0 \in I_\rho$, for each Clifford congruence ρ . Thus $J_r \subseteq I_\rho$ and so for each Clifford congruence ρ , $\sim_r \subseteq \rho$. Hence \sim_r is the least Clifford congruence on S_r . \Box

Note that $\delta_s \circ \delta_t = 0$ in $l_r^1(S)$ but $\delta_s \cdot \delta_t = \delta_0$ in $l^1(S_r)$, for each $s, t \in S$ such that $s^*s \neq tt^*$. Thus $l_r^1(S)$ is not a subalgebra of $l^1(S_r)$.

Proposition 2.9. Let *S* be an inverse semigroup. Then the following statements are equivalent: (i): $l_r^1(S)$ is module amenable as an $l_r^1(E)$ -module with the canonical action. (ii): $l^1(S_r)$ is module amenable as an $l^1(E_r)$ -module with the canonical action. (iii): $l^1(S_r/\sim_r)$ is amenable.

Proof. (*i*) \Rightarrow (*ii*) Suppose that *X* is a commutative $l^1(S_r)$ - $l^1(E_r)$ -module and $D : l^1(S_r) \rightarrow X^*$ is a module derivation. Then the following module actions are well-defined

$$\delta_s *_B x = \begin{cases} 0 & \delta_s \cdot x = \delta_0 \cdot y(\text{for some } y \in X) \\ \delta_s \cdot x & \text{otherwise,} \end{cases}$$

for each $s \in S$ and similarly for the right action. Also $l_r^1(E)$ acts on X by the following action

$$\delta_e \bullet_B x = \begin{cases} 0 & \delta_e \bullet x = \delta_0 \bullet y(\text{for some } y \in X) \\ \delta_s \bullet x & \text{otherwise.} \end{cases}$$

Therefore *X* is a commutative $l_r^1(S) - l_r^1(E)$ -module. Consider $\tilde{D} : l_r^1(S) \to X^*$ defined by

$$\tilde{D}(\delta_s) = \begin{cases} D(\delta_s) & D(\delta_s) \neq D(\delta_0) \\ 0 & otherwise. \end{cases}$$

 \tilde{D} extends to a module derivation and so it is inner. Therefore D is inner. (*ii*) \Rightarrow (*i*) Suppose that X is a commutative $l_r^1(S)$ - $l_r^1(E)$ - module. It is enough to define $\delta_0 \cdot x = \delta_0 \bullet x = 0$, then X is a commutative $l^1(S_r)$ - $l^1(E_r)$ - module. Let $D : l_r^1(S) \to X^*$ be a module derivation. Consider $\tilde{D} : l^1(S_r) \to X^*$

$$\tilde{D}(\delta_s) = \begin{cases} D(\delta_s) & s \in S \\ 0 & s = 0. \end{cases}$$

It is easy to sea that \tilde{D} extends to a module derivation and so it is inner. Therefore D is inner. (*ii*) \Rightarrow (*iii*) Since $l^1(S_r)$ is module amenable as an $l^1(E_r)$ -module with the canonical action, it follows from Proposition 2.5 of [1] that $l^1(S_r/\sim_r)$ is module amenable as an $l^1_r(E_r)$ -module with the canonical action. Now by Propositions 2.6, 2.8, $l^1(S_r/\sim_r)$ is amenable.

 $(iii) \Rightarrow (ii)$ Let X be a commutative $l^1(S_r) \cdot l^1(E_r)$ -module. Since $J_r \cdot X = X \cdot J_r = 0$, the following module actions are well-defined

$$(\delta_s + J_r) \cdot x := \delta_s + J_r, \quad x \cdot (\delta_s + J_r) := x \cdot \delta_s \quad (x \in X, \delta_s \in l^1(S_r)).$$

therefore X is an $l^1(S)/J_r$ -module. Suppose that $D : l^1(S_r) \to X^*$ is a module derivation, and consider $\tilde{D} : l^1(S_r)/J_r \to X^*$ defined by $\tilde{D}(\delta_s + J_r) = D(\delta_s)$ ($s \in S_r$). We have

$$D(\delta_s) = D(\delta_s \cdot \delta_{s^*s})$$

= $D(\delta_s) \bullet \delta_{s^*s}$
= $\delta_{s^*s} \bullet D(\delta_s)$
= $D(\delta_{s^*s} \cdot \delta_s)$
= $D(\delta_{s^*s \circ s})$
= $0.$

By the above observation, \tilde{D} is also well-defined. Moreover,

$$D(\lambda \delta_s) = \lambda \delta_s s^* \bullet D(\delta_s) = \lambda D(\delta_s) \ (\lambda \in \mathbb{C}).$$

Thus *D* is linear and so \tilde{D} is linear. Hence \tilde{D} is inner. Therefore *D* is an inner module derivation. So $l^1(S_r)/J_r$ is module amenable as an $l^1(E_r)$ -module with the canonical action and it follows from proposition 2.5 of [1] and $l^1(S_r/\sim_r) \cong l^1(S_r)/J_r$ that $l^1(S_r/\sim_r)$ is module amenable as an $l^1(E_r)$ -module with the canonical action. \Box

References

defined by

- [1] M. Amini, Module amenability for semigroup algebras, Semigroup Forum 69 (2004) 243-254.
- [2] D. G. Green, The lattice of congruence on inverse semigroup, Pacific Journal of Mathematics 57 (1975) 141-152.
- [3] J. M. Howie, An introduction to semigroup theory, Academic Press, London, 1976.
- [4] M. V. Lawson, Inverse semigroups. The theory of partial symmetries, World Scientific, Singapore, 1998.
- [5] M. Sadr, Pseudo-amenability of Brandet semigroup algebras, Comment. Math. Univ. Carolin. 50.3 (2009) 413-419.
- [6] M. Mehran, M. Amini, Amenability of restricted semigroup algebras, Int Journal of Math Analysis 4.1 (2010) 17-28.
- [7] N. R. Reilly, H. E. Scheiblich, Congruence on regular semigroups, Pacific J of Mathematics 23 (1967) 349-360.
- [8] R. Rezavand, M. Amini, M. H. Sattari, D. Ebrahimi Bagha, Module Arense regularity for semigroup algebras, Semigroup Forum 77 (2008) 300-305.
- [9] M. Rostami, A. Pourabbas, M. Essmaili, Approximate amenability of certain semigroup algebras, Acta Mathematica Scientia 33B(2) (2013) 565-577.
- [10] V. Runde, Lectures on amenability, Lecture Notes in Mathematics, Springer-Verlag, New York, 2002.